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Abstract— The operation of smart grids heavily relies on
secure and accurate meter measurements provided by phasor
measurement units (PMUs). Therefore, the optimal PMU place-
ment (OPP) aiming to achieve the complete system observability
of smart grids with as few PMUs as possible has been extensively
investigated. Although many existing studies have focused on the
OPP, few of them are concerned with the placement order of
PMUs. To protect as many buses as possible in smart grids
when installing PMUs in stages owing to high cost, this paper
proposes the attack-resilient OPP strategy which places PMUs
in order by using reinforcement learning guided tree search,
where the sequential decision making of reinforcement learning is
utilized to explore placement orders. The least-effort attack model
is carried out to screen vulnerable buses such that the buses
adjacent to these buses can be placed PMUs in advance to reduce
the state space and action space of the large-scale smart grid
environment. Based on that, the reinforcement learning guided
tree search approach is used to explore the key buses which
need placing PMUs, where the repeated exploration of the agent
is avoided by tree search. Then, a reasonable placement order of
PMUs is obtained according to the action sequence the proposed
method provides. Finally, the effectiveness of the proposed
method is verified on various IEEE standard test systems and
the comparison results with existing methods are provided.

Index Terms— Reinforcement learning, tree search, phasor
measurement unit, optimal PMU placement, smart grid.

I. INTRODUCTION

IN SMART grids, system operators make control deci-
sions based on the current system states and formulate

the dispatch plan. The supervisory control and data acqui-
sition (SCADA) system is in charge of gathering measured
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system data, and the state estimation is implemented by the
control center to process data from the SCADA system.
To guarantee the secure operation of smart grids, the bad
data detector (BDD) is widely adopted in smart grids to
reveal the deviation between estimated system states and the
true values [1]. However, the research in [2]–[6] has shown
a malicious attack named false data injection (FDI) attack
can invade smart grids while keeping stealthy to the BDD
mechanism. The FDI attack can modify the estimated states by
compromising measurements in the SCADA system, causing
severe consequences such as key lines overloading and load
shedding [7].

To improve the security and accuracy of the state esti-
mation of smart grids, many researchers have considered
various applications of phasor measurement units (PMUs)
recently [8]–[12]. PMUs can provide real-time synchronous
phasor measurements with Global Positioning System (GPS)
time stamp [13]. Despite the fact that PMUs may be vulner-
able to cyber threats such as time-synchronization and GPS
spoofing attacks, PMUs and their communication protocols
do provide more secure supports than traditional meters in the
SCADA system [14]–[16]. Therefore, PMUs can be used to
verify state variables of the state estimation such as voltage
phase angles independently. However, the costs of PMUs are
expensive, and it is not necessary to equip PMUs for every
bus since some system states can be calculated through the
measurements collected by PMUs on adjacent buses [17].
Once a PMU is placed at one bus, the voltage phasor of
the bus and current phasors on the branches incident to the
bus can be measured, thus voltage phasors of adjacent buses
can be calculated according to Kirchhoff’s laws. Therefore,
the objective of OPP is to deploy the fewest PMUs in
smart grids while obtaining the complete system observ-
ability, i.e., using the fewest PMUs to monitor all system
measurements [18].

The OPP is considered as an NP-hard combinatorial opti-
misation problem and many achievements have been made
on related researches [19]–[21]. The methods to solve the
OPP problem in existing studies can be roughly divided into
two categories, i.e., heuristic techniques and mathematical
programming techniques [22]. Heuristic techniques relying
on search process to solve the OPP, which include greedy
algorithm [23], iterated local search [24], spanning tree search
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[25], decision tree [26], immune algorithm [27], particle
swarm optimization [28], non-dominated sorting genetic [29],
genetic algorithm [30], tabu search [31], etc. Mathematical
programming techniques relying on analytical calculations to
solve the OPP include integer linear programming (ILP) [32]
and mixed integer linear programming (MILP), etc. Although
aforementioned techniques have significantly promoted the
research of the OPP, most of them can not obtain orderly
solutions directly. The number of PMUs to ensure the complete
observability is generally very large in a large-scale smart
grid. The high cost of the PMU installation makes system
designers prefer to place PMUs in multistage [33]. Therefore,
PMUs placed in each stage should protect as many buses
as possible to defend potential data integrity attacks. In this
respect, [34] uses ILP approach to realize the optimal multi-
stage scheduling of PMU placement, but it does not consider
to protect vulnerable buses preferentially during the process
of placement. [35] prioritizes the protection of vulnerable
buses under the false data injection attack based on the
greedy algorithm, but the results may fall into suboptimal
solutions.

Motivated by above discussions, this paper focuses on
identifying the reasonable PMU placement order, which can
observe as many buses as possible with limited PMUs while
ensuring the complete observability of the smart grid with the
minimum number of PMUs. To this end, the attack-resilient
OPP is modeled as a sequential decision making problem
which is equivalent to a Markov decision process. The rein-
forcement learning guided tree search is proposed to solve
the sequential decision making problem, i.e., identifying key
buses and placing PMUs to measure these buses until the
complete observability of the smart grid is obtained. Mean-
while, a reasonable reward function is constructed to help
the reinforcement learning guided tree search preferentially
taking the actions having more reward and achieving optimal
sequential decisions. The proposed method is tested on five
IEEE standard test systems, where the corresponding sim-
ulations with comparisons are presented to demonstrate its
effectiveness.

The main contributions of this paper are summarized as:
• The reinforcement learning guided tree search without

modeling smart grids is proposed to solve the OPP
problem for the first time. Since the placement order
is commonly neglected in existing OPP research, the
proposed method can obtain the minimum number of
PMUs that ensures the complete observability of the
smart grid as well as the placement order that helps to
observe as many buses as possible with limited PMUs.

• Considering the environment of the OPP has a limited
exploration space, the tree search method is used to
accelerate the learning process by avoiding repeated
exploration. The proposed reinforcement learning guided
tree search can not only avoid the local optimum prob-
lem [36], but also solve the OPP problem efficiently.

• The least-effort attack model [37] is used to screen
vulnerable buses which need PMUs to observe. Then
deep Q network (DQN) is used to approximate the value
function in reinforcement learning, which facilitates the

proposed method to work well in the large state and action
spaces especially in the large-scale grid environment.

The rest of the paper is organized as follows. Section II
introduces the preliminaries that are used throughout the paper.
Section III proposed the OPP strategy based on reinforcement
learning guided tree search. Section IV presents test results of
the proposed method on IEEE standard test systems. Finally,
the paper is concluded in Section V.

II. PRELIMINARIES

This section will briefly introduce the DC state estimation,
the principle of OPP and the least-effort FDI attack model in
the proposed scheme.

A. DC State Estimation

The DC state estimation [38] does not consider reactive
power flows and injections, where the state variable of bus i
is the phase angle and denoted as θi . The active power flow
from bus i to bus j (i, j = 1, 2, . . . , n; i �= j) in DC state
estimation can be represented as

Pij = θi − θ j

Xi j
, (1)

and the corresponding active power injection of bus i can be
written as

Pi =
∑
j∈Ni

Pi j , (2)

where Xij is the reactance of branches between bus i and bus
j , and Ni represents the set of all buses connected with bus i .

The system measurement for DC state estimation can be
expressed as

z = Hx + ez = Hx + ez = Hx + e, (3)

where zzz = [z1, z2, . . . , zm ]� is the system measurement
vector that consists of active power flows and injections,
xxx = [θ1, θ2, . . . , θn]� is the state vector consisting of the
phase angles of buses in the system. In a PMU-based state
estimator, these phase angles can be measured or com-
puted from the synchrophasors collected by the PMUs. eee =
[e1, e2, . . . , en]� is the measurement error vector, HHHm×n is a
constant Jacobian matrix implying the system configuration
and connection information, m is the number of measurements
used for state estimation and n is the number of system state
variables.

The problem can be solved by the weighted least
square (WLS) method, which obtains the value of state vector
xxx by minimizing the following objective function:

JJJ(xxx) = (zzz−HHHx̂xx)�RRR−1(zzz−HHHx̂xx), (4)

where RRR represents a diagonal weighting matrix of measure-
ment variances. It can be checked that the optimal value of
the state vector in DC state estimation is generally given by

x̂xx = (HHH�RRR−1HHH)HHH�RRR−1zzz. (5)
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B. Principle of OPP

PMUs collect system measurements such as bus volt-
age phasors and branch current phasors and provide GPS
timestamps on their measurement reports. Compared to the
traditional measurements, these synchrophasors are considered
more difficult to be modified by adversaries [23]. Therefore,
PMUs are popular in smart girds. Consider placing a PMU on
bus i , the voltage phasor and the branch current phasors of the
bus can be measured, thus the phase angle θi and the power
flows Pij ( j ∈ Ni ) can be obtained. Meanwhile, according
to (1), we have

θ j = θi − Pij × Xij , (6)

which suggests that θ j can be obtained from θi and Pij ( j ∈
Ni ). Therefore, once a PMU is placed on bus i , the state
variables of all buses in set Ni and bus i are observable.

The objective of OPP is to ensure the complete system
observability by placing the minimal number of PMUs on
some critical buses for cost-effective operation. For a smart
grid with n buses, the OPP problem is formulated as:

min
PPP
‖PPP‖0 (7)

s.t . CCCPPP ≥ [1, 1, . . . , 1]�1×n. (8)

where PPP = [p1, p2, . . . , pn]� is a binary decision vector with

pi =
{

1, if a PMU is installed on bus i

0, otherwise,
(9)

and CCC is a binary connectivity matrix whose elements are
defined as:

Cij =

⎧⎪⎨
⎪⎩

1, if i = j

1, if i ∈ N j

0, otherwise.

(10)

In addition, the existence of zero injections, conventional
power injections and power flows can possibly help to reduce
the number of PMUs needed in the OPP problem. Zero
injections mean no a generator injecting power or a load
consuming power from a bus, where the sum of flows on all
branch currents associated with this bus is zero according to
the Kirchhoff’s Current Law (KCL). If the zero-injection bus
and all its neighbours are observable except one, applying the
KCL to the zero-injection bus will make the unobservable bus
become indirectly observable. On the other hand, conventional
power injections and power flows mean some bus injection
measurements and branch flow measurements in smart grid
are observable beforehand. The conventional power injection
has similar effects with that of zero injections, because the
sum of branch flows on the bus with the conventional power
injection becomes known according to KCL. Moreover, if a
bus at one end of the branch with conventional power flows
is observable, the bus at the other end of the branch will also
be observable.

The topology transformation method can be used to deal
with these situations in the OPP problem. The core idea of
the topology transformation method is to merge the critical
buses related to zero injections or conventional power flows,

where the merging process modifies the network topology and
the connectivity matrix of the smart grid. For instance, a zero
injection bus can be merged with one of its neighbours. For
a conventional power flow, both ends of the branch with the
conventional power flow can be merged together according to
the method. Then, the OPP problem can be solved in the new
topology and more details can be found in [39].

C. Least-Effort FDI Attack

According to the DC state estimation, if the system mea-
surement residual satisfies

|zzz−HHHx̂xx|2 < τ (11)

with a given threshold τ determined by system operators
based on sensor and system properties [38]. A small τ usually
indicates a more precise measurement with limited noises from
the meters, though the threshold itself does not have direct
impact on the attack model nor the optimal PMU placement.

If (11) is satisfied, the BDD considers system measurements
to be statistically normal; otherwise, the BDD will flag the
measurement vector as abnormal and try to eliminate the
specific piece of data.

The FDI attack exploits the BDD mechanism to target
the data integrity [2], where the attack vector is generally
constructed as:

a = Hca = Hca = Hc. (12)

With an arbitrary nonzero vector ccc = [c1, c2, . . . , cn]�, the
comprised measurement vector containing attack vector aaa =
[a1, a2, . . . , am]� is represented as

zzza = z+ az+ az+ a. (13)

As shown in the literature (e.g., [2]), the system residuals
before and after an FDI attack are not distinguishable, allowing
the attack to bypass BDD and inflict stealthy disruptions and
damages to smart grid operations. An adversary can design
ccc = [0, 0, . . . , ci , 0, . . . , 0]� to compromise the state variable
xi , which implies the adversary need to manipulate system
measurements according to the value of vector aaa, and the
number of measurements that need to be manipulated is the
number of nonzero elements of the vector aaa. In order to save
attack cost, the adversary may design vector ccc to minimize the
number of nonzero elements of the vector aaa.

This paper considers the situation that the adversary only
chooses a state variable to inject false data even though using
possible offset in matrix HHH by injecting specific errors into
several state variables may be more cost-effective [37]. That
is, the adversary needs to find a column of matrix HHH that
has the fewest nonzero elements corresponding to system
measurements. Assuming that all power injections Pi and all
power flows Pij , Pji (i, j = 1, 2, . . . , n; i > j) are measured
by smart grids, it is observed that the bus which has the fewest
adjacent buses possesses the minimal attack cost.

Take the IEEE 9-bus system in Fig. 1 as an example: the
adversary can change state variable of Bus 1 as long as he/she
modifies the measurements P1, P4, P14, and P41. It is shown
in Fig. 1 that attack state variables of Bus 1, 2, and 3 requires
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Fig. 1. Example of FDI-vulnerable buses (Buses 1, 2, and 3) in the IEEE
9-bus system.

the least cost, hence these three buses are vulnerable buses in
the sense of the least-effort attack.

It is notable that in a non-least-effort attack, the increased
effort will still need to follow the same stealthiness require-
ment set forth in the FDI attack. With the increased effort,
the attacker will target more buses as the vulnerable victim
to manipulate their measurements, instead of different buses
with more criticality.

III. ATTACK-RESILIENT OPP

This section introduces the problem of attack-resilient OPP
and presents the proposed OPP strategy based on reinforce-
ment learning guided tree search, where the placement process
is divided into two stages: the priority placement stage and the
main placement stage. The details are as follows.

A. Problem Statement

In the traditional OPP problem (7)-(8), the attention is
generally paid on the optimal number of PMUs while the
placement order is neglected. Due to the high cost of PMUs,
a reasonable PMU placement order can protect more buses to
defend potential attacks when only a limited number of PMUs
can be installed.

In the attack-resilient OPP, a PMU will be placed at a
step. Therefore, the binary decision vector PPPt at step t (t =
1, 2, . . . , T ) satisfies

‖PPPt‖0 = t, (14)

and

(PPPt − PPPt−1) � [0, 0, . . . , 0]�. (15)

Therefore, at step t , the number of PMUs is t . And the
complete observability is achieved at the final step T .

The objective of the attack-resilient OPP is to identify
the reasonable PMU placement order, which can protect as
many buses as possible with limited PMUs while ensuring
the complete observability of the grid with the minimum total
number of PMUs. Therefore, the objective function can be
designed as:

T−1∑
t=0

γ t (‖ssst+1 − ssst‖0 − 1), (16)

where γ is the discount factor. The i th element of the binary
observability vector ssst at step t is defined as

si =
{

1, if Bi �= 0

0, if Bi = 0,
(17)

where si = 1 means the bus i is observable while si = 0 means
the bus i is not observable. And Bi is the i th element of vector
BBB defined as

BBB = CCCPPP. (18)

Therefore, ‖ssst+1−ssst‖0 represents increased number of observ-
able buses after placing a PMU at step t+1. Since γ is usually
slightly less than 1, the objective function approximates to

T−1∑
t=0

(‖ssst+1 − ssst‖0 − 1) = ‖sssT − sss0‖0−T = n − T, (19)

which needs minimizing the total number of PMUs. Mean-
while, due to the existing of γ , the objective function will be
larger if protecting more buses at earlier step.

Accordingly, the attack-resilient OPP can be formulated as

max
PPP1,PPP2,...,PPPT ,T

T−1∑
t=0

γ t (‖ssst+1 − ssst‖0 − 1) (20)

s.t . CCCPPPT ≥ [1, 1, . . . , 1]�1×n (21)

(14)− (15). (22)

In the problem (20)-(22), the PMU placement order
PPP1,PPP2, . . . ,PPPT and the total number of PMUs T need to be
decided to maximize the objective function.

B. Priority Placement Stage
According to the least-effort FDI attack model, these buses

which have only one adjacent bus may be preferred target of
the adversaries and are considered to be vulnerable buses in
the sense of the least effort attack cost. In priority placement
stage, the vulnerable buses are identified and their adjacent
buses are selected to place the PMUs first.

In Fig. 2, Bus 1 is considered vulnerable since manipulating
measurements of Bus 1 needs the least-effort attack cost.
A PMU can be placed on Bus 1 or Bus 2 to protect the
vulnerable Bus 1, and it is observed that placing a PMU on
Bus 2 may protect more buses. It can be proved that the OPP
problem always exists an optimal solution which contains the
bus adjacent to the vulnerable buses and the following proof
by contradiction is introduced briefly. Assume there is no one
optimal solution containing the bus adjacent to the vulnerable
buses in smart grids. Without loss of generality, consider
Fig. 2 as a part of the power system topology. According
to the assumption, no PMU is placed on Bus 2. Therefore,
a PMU must be placed on Bus 1 to protect itself, and the
corresponding optimal solution contains bus 1 while Bus 2 is
not contained. However, moving the PMU from Bus 1 to Bus 2
does not change the complete observability of the system and
the number of the PMUs will also not change; there also
exists an optimal solution contains Bus 2 while Bus 1 is not
contained, which contradicts the assumption. It shall be noted
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Fig. 2. FDI-vulnerable bus in the smart grids.

that several vulnerable buses share the same adjacent bus in
the interconnected radial system, placing a PMU on the bus
adjacent to these vulnerable buses is optimal.

The discussion above shows that there always exists an opti-
mal solution that contains the bus adjacent to the vulnerable
buses, which implies PMUs can be placed on buses adjacent
to the vulnerable buses in the priority placement stage. This
operation not only shows how to place part of PMUs in
advance, but also helps to reduce the state and action spaces
of a large-scale grid. If the power grid does not have the bus
that possessing only one adjacent bus, the priority placement
stage will not be required.

C. Main Placement Stage

After the priority placement stage, the main placement stage
aims to find optimal locations from remaining buses toward
the objective of attack-resilient OPP using the reinforcement
learning approach. The reinforcement learning algorithm aims
to find an action sequence from the repeated trial-and-error
process in order to maximize total rewards [40]. An agent
takes an action at a state and receives a reward related to the
goal from the environment. The agent can learn the optimal
policy from the cumulative rewards by adjust its actions.
In Q-learning, the q value is the cumulative reward function of
states and actions. For each triplet of q , state and action create
an entry in a Q-Table. However, it is impossible to build and
update an oversize Q-Table facing to the large state and action
space of the large-scale power system. Meanwhile, the deep
neural network that is called DQN can be used to approximate
q value and overcome the drawback of Q-Table.

In this paper, we proposed the diagram of the reinforcement
learning guided tree search algorithm for PMU placement,
which is show in Fig. 3. The agent intends to find the locations
of PMU placement by utilizing the tree search algorithm to
avoid repeated action sequences. DQN is used to approximate
the q value and offers the selection criteria to the search tree.
The smart grid can be viewed as the environment that interacts
with the agent. The action a represents the PMU location,
while the state sss represents the system observability.

Fig. 3. The flowchart of the reinforcement learning guided tree search.

The details about the state, action and reward in the algo-
rithm are shown as follows. The state variable is defined as
the system observability, which is the same as the equation
(17). The desired final state is

sssT = [1, 1, . . . , 1]�. (23)

The action a ∈ {1, 2, . . . , n} in each step is to place a PMU
on a bus, i.e., set the i th element of PPP as 1 when a = i . And
the next state st+1 can be obtained according to (17)-(18).
Corresponding to the objective function (20), the reward is
defined as

rt+1 = c(‖ssst+1 − ssst‖0 − 1), (24)

where c is a gain coefficient to enhance the difference between
rewards of different actions. To reduce the action space, action
set A needs to be filtered out actions with smaller reward and
the action a ∈ A is required to satisfy

ra
t+1 ≥ max

a
ra

t+1 − c × b, (25)

where ra
t+1(r

a
t+1 > 0) represents the instant reward of the

agent after taking an action a at step t + 1, and b is the
limited coefficient which controls the lower limit of the reward
ra

t+1. If b is oversized, the filter function will lose the filtering
effect; otherwise, an overly small b may filter out the optimal
solution. When the agent is exploring, the reward of all actions
will be calculated according to (24) and the action which
satisfies (25) has chance to be selected by the agent though
there are n kinds of actions.

According to the Bellman equation [40], the value function
q is updated by

qi+1(sss, a) = E

[
rt+1 + γ max

a′
qi(ssst+1, a′)|sss, a

]
, (26)

where i is the iterative index and a′ is the action in the
(t + 1)-th step, and discount factor γ is set slightly smaller
than 1 to ensure the convergence of the q during the learning
process [40]. When i →∞, the optimal value function from
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Fig. 4. The structure of DQN for the attack-resilient OPP.

the current step t to the final step T can be obtained by

q∗(sss, a) = max
π

E

[
T−t∑
k=0

γ krt+k |ssst = sss, at = a

]
, (27)

where π is the action strategy. Therefore, the corresponding
optimal action is obtained as

a∗ = arg max
a∈A

q∗(sss, a). (28)

The DQN is a two-layer fully connected neural network
established as Fig. 4. The state is used as input, which first
passes through the fully connected hidden layer that has l
neurons with the output

www = f (MMM1sss+ ddd1), (29)

where MMM1 is the weight matrix, ddd1 is the vector of biases, and
f is activation function. The output layer is fully connected
and provides the q value of each action by

[q(sss, 1), q(sss, 2), . . . , q(sss, n)]� =MMM2www+ ddd2, (30)

where MMM2 is the weight matrix and ddd2 is the vector of biases.
Unlike common reinforcement learning applications which

require repeated exploration to update the q value and obtain
an optimal policy, the attack-resilient OPP only needs to
explore and identify an action sequence that obtains a high
reward. In other words, the action sequences that the agent
explored all can be used as solutions, and the scheme with a
higher reward will be selected as the final solution. Therefore,
the repeated action sequence is not expected in the training
process. In this respect, reinforcement learning guided tree
search [36] is used to explore environment more efficiently.
Fig. 5 shows the detailed structure of the tree search, which
begins on the root node denoting the initial state in an episode
of the training process. Then, the agent uses ε-greedy strategy
to select a child node which represents the action and next
state obtained from this action according to the q value of
each child node, until the leaf node representing the final state
is selected. After a trajectory is selected, the leaf node and
the nodes having no child nodes of the trajectory will be
deleted from bottom to top, which means these nodes are fully

Fig. 5. The work flow of a tree search.

explored. Therefore, the tree search ensures that the agent does
not explore repeated solutions in the limited solution space.

Algorithm 1 shows the details of the reinforcement learning
guided tree search method. The deep reinforcement learning

Algorithm 1 Reinforcement Learning Guided Tree Search
Algorithm
Input: The benchmark system; Discount factor γ ;
Output: Action sequence;
1: Initialize the experience buffer D, the DQN parameter ω

and ω− and the search tree;
2: for episode g = 1 : M do
3: Obtain the state after the priority placement stage;
4: while sss �= [1, 1, . . . , 1]� do
5: Filter action set A according to (25);
6: Collect the trajectories’ information [sss, a, r,sss′] ;

Running the tree search algorithm;
7: Store the experience [sss, a, r,sss′] in buffer D;
8: Sample a mini-batch of N experience [sssi , ai , ri ,sss′i ]

from buffer D;

9: yi =
{

ri , if sss′i = [1, 1, . . . , 1]�
ri + γ maxa′ q(sss′i , a′;ω−), otherwise.

10: Update parameter ω by using gradient rule (31);
11: Reset ω− = ω after every S steps;
12: sss← sss′.
13: end while
14: end for

uses two networks to eliminate the data correlation: one is
the main network that is updated every step during training,
and the other is the target network that provides the objective
to be approximated by the main network. In Algorithm 1,
Line 1 initializes the experience buffer, the parameter of DQN
and the search tree. Line 2 means the training begins in
a loop for M episodes. Line 3 means the initial state of
each episode starts after the priority placement stage. Line
4 begins exploration of the episode. Line 5 filters the action set
according to (25). In Line 6, the agent selects action a based
on the tree search algorithm and interacts with environment
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collecting the experience state sss, action a, next state sss′i and
reward r . The detailed tree search algorithm is shown in
Algorithm 2, which is used to record explored edges and avoid
completely expanded nodes. Line 7 stores the experiences in

Algorithm 2 Tree Search Algorithm
Input: The benchmark system; Greedy rate ε; The value

function q;
Output: Action sequence;
1: Initialize root node nr ;
2: for episode g = 1 : M do
3: node n ← nr ;
4: while node n is not leaf node do
5: Use ε-greedy strategy to select an action a from

the action set of the node n;
6: Take the action a and obtain the child node nc of n;
7: n← nc;
8: end while
9: while The action set of the node n is empty do

10: Delete the action from the action set of the parent
node n p;

11: n← n p .
12: end while
13: end for

buffer D. From Line 8 to Line 9, the algorithm samples N
experiences [sssi , ai , ri ,sss′i ] and calculates yi according to the
equation in Line 9. Line 10 updates the parameters of the
main network based on the following gradient rule

ωt+1 = ωt − α∇ωt L(ωt ), (31)

where α is the length of the updated step and L is a loss
function:

L = 1

N

N∑
i=1

(yi − q(sssi , ai ;ω)). (32)

The parameters of the target network ω− is replaced by the
parameters of the main network ω after every S steps in
Line 11. Line 12 updates the state and starts a new episode.

According to (27), the value function represents the mathe-
matical expectation of subsequent cumulative rewards because
taking an action from a state ssst may obtain different reward
rt and several different states ssst+1. Since the probability of
each different scenario is usually unknown, the reinforcement
learning algorithm sets a step length α and the value function
is updated with a little step length α towards the value of the
explored experiences as (31). On the other hand, the more
experiences the algorithm accumulates, the q value is closer
to the mathematical expectation, but certain state ssst and action
at yield certain state ssst+1 and reward in the environment.
Therefore, the step length α can be set close to 1 to accelerate
the convergence.

IV. CASE STUDIES

The proposed method is validated on various IEEE stan-
dard test systems to verify its effectiveness. All experiments
have been done on the Lenovo laptop with 2.7 GHz Intel

Fig. 6. Comparison between reinforcement learning and the proposed
reinforcement learning guided tree search approach.

Core i7-7500U processor and 8 GB RAM on Windows 10 sys-
tem. The topology information of the benchmark systems are
obtained from [41] and the algorithms are implemented on
Python 3.7. The discount factor γ is set as 0.96. The greedy
rate ε is set as 0.6 initially and linearly decreases with the
training process. Moreover, the coefficient c is set as 10 and
b is set as 2, respectively. The time interval of updating the
target network S is set as 200.

Table I shows the results of the proposed reinforcement
learning guided tree search approach in various standard test
systems, including the IEEE 14-bus, 30-bus, 57-bus, 118-bus
and 300-bus systems. It can be found that compared with
the other works, the proposed method achieves satisfying
solutions. Meanwhile, it is observed the number of PMUs
achieving the system complete observability is less than one
third of the number of smart grid buses. On the other hand,
we compare the reinforcement learning and the proposed
reinforcement learning guided tree search, and the comparison
results are presented in Fig. 6. As the figure shows, the
optimal solution can also be obtained only using reinforce-
ment learning approach in IEEE 14-bus, 30-bus and 57-bus
system. However, reinforcement learning often falls into local
optima for the large-scale power systems, thus the proposed
reinforcement learning guided tree search is more effective.

Table II shows the detailed location of the optimal solution
in each test system and provides an orderly placement pro-
gram. Fig. 7 shows the placement process in IEEE 14-bus and
30-bus system respectively according to the Table II, where
green indicates PMU placements in the priority placement
stage and blue indicates the main placement stage. As shown in
Fig. 7, the PMUs placed in priority placement stage to protect
vulnerable buses reduces the state space and action space of
the reinforcement learning for the main placement stage.

To further verify the effectiveness of the proposed method,
the effect of the placement order obtained by the proposed
method is compared with random placement and greedy
algorithm (GA) in IEEE 30-bus, 57-bus, 118-bus, and 300-bus
system, as shown in Fig. 8. We simulate 100 random place-
ment orders in the main stage placement of each standard
test system and draw the max number of the observable
buses at each step. In addition, we use the GA to select
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TABLE I

OPP RESULTS USING THE PROPOSED METHOD AND OTHER METHODS IN IEEE TEST SYSTEMS

TABLE II

LOCATIONS OF PMUS IN IEEE TEST SYSTEMS

TABLE III

LOCATION OF ZERO INJECTIONS AND CONVENTIONAL POWER FLOWS

bus locations at each step, which would increase the number
of observable buses the most. In the IEEE 30-bus system,
all curves are completely overlapped. Compared with random
placement, the placement order of the proposed method can
protect more buses in other cases until the complete observ-
ability is obtained. Although GA protects more buses at some
steps, it will produce more total number of the PMUs to
get the complete system observability in the IEEE 57-bus,
118-bus, and 300-bus system. Therefore, our method can get
the optimal total number of PMUs and protect as many buses
as possible at each step. Moreover, considering the q value
in the reinforcement learning may have minor errors caused
by insufficient training, we also use GA to decide placement
order from PMU locations obtained by the proposed method
and the corresponding results are shown in Fig. 8. It can be

seen that the proposed method with GA increases the number
of observable buses slightly at some steps in the IEEE 57-bus,
118-bus and 300-bus system, which makes the placement order
more reasonable.

To illustrate the training process, we will use the IEEE
30-bus system as an example. We train DQN for 1,500
episodes. Fig. 9 shows the number of PMUs changes with
the training process in IEEE 30-bus system. In the first
800 episodes, the agent selects actions based on the ε-greedy
algorithm and the search space is explored randomly. After
800 episodes, the number of the PMUs becomes steady and
the optimal solution of the OPP problem in the 30-bus system
is identified. It can be noted that due to the discount factor,
the agent prefers to place PMUs on buses that have higher
instant rewards on the front of the sequence.
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TABLE IV

OPP RESULTS FOR CASE OF CONSIDERING ZERO INJECTIONS

TABLE V

OPP RESULTS FOR CASE OF CONSIDERING ZERO INJECTIONS AND CONVENTIONAL POWER FLOWS

Fig. 7. The process of PMU placement.

Finally, we also test the proposed method for two special
cases, i.e., 1) the case of considering zero injections, and 2) the
case of considering zero injections and conventional power
flows. The locations of zero injections and conventional power
flows are shown in Table III. We use the same locations of
conventional power flows with [44] (except for IEEE 300-bus
system since it is not considered in [44]) and the solutions of
the two cases are shown in Table IV and Table V. It can be
found that the proposed method works well compared with
the results in existing literature.

Also, it is worth mentioning the possibility of a non-least-
effort attack where the attacker can increase their efforts and
target more vulnerable buses. As the defender is provided the
full system observability through the proposed OPP strategy
in the network, although the priority stage only finds the
optimal locations to observe vulnerable buses through the

Fig. 8. The effect of placement orders.

least-effort FDI attack, the main stage can nonetheless provide
the complete system observability and thus also defend against
non-least-effort FDI attacks. That is, once the OPP problem
is solved and the complete system observability is achieved
by the proposed method, the resulting OPP strategy would
be effective to defend against the least-effort attack and any
non-least-effort attack.

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:46:07 UTC from IEEE Xplore.  Restrictions apply. 



1928 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 17, 2022

Fig. 9. The number of PMUs placed during the training process in the IEEE
30-bus system.

V. CONCLUSION

This paper has proposed an attack-resilient OPP strategy
which considers to defend potential attacks with limited
PMUs. The problem is formulated under a reinforcement
learning framework and a dedicated reward function is
designed to identify critical buses where PMUs can be
installed in multiple stages to ensure attack resilience and
system observability in smart grids. The placement is divided
into two stages, i.e., the priority placement stage and the
main placement stage. The priority placement stage identifies
vulnerable buses whose adjacent buses are selected to place
PMUs preferentially, while the main placement stage aims
to find the optimal locations from remaining buses such
that the complete system observability can be guaranteed.
Considering the large state space and action space of the
environment in large-scale smart grids, a Markov process
is designed to describe the OPP problem and the DQN is
used to approximate the value function instead of oversized
Q-Table. Moreover, the tree search method is utilized to avoid
repeated exploration, which helps the reinforcement learning
approach to search solutions efficiently. Finally, an orderly
OPP sequence is achieved by the proposed method and the test
results on various benchmark systems prove the effectiveness
of the proposed method. Following this work, we will focus
on an important future direction to investigate the case of
PMU channel limit. While deciding branches to assign PMU
channels will increase the complexity of the learning problem,
it may be an important addition given the need to further save
the cost of PMU channels in this critical network.
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